DNA Transport across the Outer and Inner Membranes of Naturally Transformable Vibrio cholerae Is Spatially but Not Temporally Coupled

نویسندگان

  • Patrick Seitz
  • Melanie Blokesch
چکیده

UNLABELLED The physiological state of natural competence for transformation allows certain bacteria to take up free DNA from the environment and to recombine such newly acquired DNA into their chromosomes. However, even though conserved components that are required to undergo natural transformation have been identified in several naturally competent bacteria, our knowledge of the underlying mechanisms of the DNA uptake process remains very limited. To better understand these mechanisms, we investigated the competence-mediated DNA transport in the naturally transformable pathogen Vibrio cholerae. Previously, we used a cell biology-based approach to experimentally address an existing hypothesis, which suggested the competence protein ComEA plays a role in the DNA uptake process across the outer membrane of Gram-negative bacteria. Here, we extended this knowledge by investigating the dynamics of DNA translocation across both membranes. More precisely, we indirectly visualized the transfer of the external DNA from outside the cell into the periplasm followed by the shuttling of the DNA into the cytoplasm. Based on these data, we conclude that for V. cholerae, the DNA translocation across the outer and inner membranes is spatially but not temporally coupled. IMPORTANCE As a mode of horizontal gene transfer, natural competence for transformation has contributed substantially to the plasticity of genomes and to bacterial evolution. Natural competence is often a tightly regulated process and is induced by diverse environmental cues. This is in contrast to the mechanistic aspects of the DNA translocation event, which are most likely conserved among naturally transformable bacteria. However, the DNA uptake process is still not well understood. We therefore investigated how external DNA reaches the cytosol of the naturally transformable bacterium V. cholerae. More specifically, we provide evidence that the DNA translocation across the membranes is spatially but not temporally coupled. We hypothesize that this model also applies to other competent Gram-negative bacteria and that our study contributes to the general understanding of this important biological process.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ComEA Is Essential for the Transfer of External DNA into the Periplasm in Naturally Transformable Vibrio cholerae Cells

The DNA uptake of naturally competent bacteria has been attributed to the action of DNA uptake machineries resembling type IV pilus complexes. However, the protein(s) for pulling the DNA across the outer membrane of Gram-negative bacteria remain speculative. Here we show that the competence protein ComEA binds incoming DNA in the periplasm of naturally competent Vibrio cholerae cells thereby pr...

متن کامل

A novel protein, TtpC, is a required component of the TonB2 complex for specific iron transport in the pathogens Vibrio anguillarum and Vibrio cholerae.

Active transport across the outer membrane in gram-negative bacteria requires the energy that is generated by the proton motive force in the inner membrane. This energy is transduced to the outer membrane by the TonB protein in complex with the proteins ExbB and ExbD. In the pathogen Vibrio anguillarum we have identified two TonB systems, TonB1 and TonB2, the latter is used for ferric-anguibact...

متن کامل

Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow

In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...

متن کامل

Solute Transport for Pulse Type Input Point Source along Temporally and Spatially Dependent Flow

In the present study, analytical solutions are obtained for two-dimensional advection dispersion equation for conservative solute transport in a semi-infinite heterogeneous porous medium with pulse type input point source of uniform nature. The change in dispersion parameter due to heterogeneity is considered as linear multiple of spatially dependent function and seepage velocity whereas seepag...

متن کامل

Vibrio cholerae iron transport systems: roles of heme and siderophore iron transport in virulence and identification of a gene associated with multiple iron transport systems.

Vibrio cholerae iron transport mutants were tested for their ability to cause disease in an infant mouse model. The mice were challenged with either the wild-type strain, a vibriobactin synthesis mutant, a heme utilization mutant, or double mutants containing both the vibriobactin synthesis defect and the heme utilization defect. When mice were challenged with 10(7) bacteria, the ability of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2014